Additive Polynomials over Perfect Fields

نویسنده

  • SALIH DURHAN
چکیده

where aij ∈ K. Additive polynomials over valued fields in positive characteristic play an important role in understanding many algebraic and model theoretic properties of maximal fields of positive characteristic, see [7] for a thorough examination of the issue. A subset S of a valued field (K, v) has the optimal approximation property if for all a ∈ K, the set {v(s − a) : s ∈ S} has a maximal element. By the image of a polynomial f(x1, . . . , xn) over K we mean the set {f(a1, . . . , an) : a1, . . . , an ∈ K}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Polynomials and Their Role in the Model Theory of Valued Fields

We discuss the role of additive polynomials and p-polynomials in the theory of valued fields of positive characteristic and in their model theory. We outline the basic properties of rings of additive polynomials and discuss properties of valued fields of positive characteristic as modules over such rings. We prove the existence of Frobenius-closed bases of algebraic function fields F |K in one ...

متن کامل

Chebyshev polynomials over finite fields and reversibility of -automata on square grids

Using number theory on function fields and algebraic number fields we prove results about Chebyshev polynomials over finite prime fields to investigate reversibility of two-dimensional additive cellular automata on finite square grids. For example, we show that there are infinitely many primitive irreversible additive cellular automata on square grids when the base field has order two or three.

متن کامل

Reversed Dickson polynomials over finite fields

Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials Dn(x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a. We study reversed Dickson polynomials with emphasis on their permutational properties over finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are closely related to almost perfect nonlinear ...

متن کامل

On a conjecture of Beard, O'Connell and West concerning perfect polynomials

Following Beard, O’Connell and West (1977) we call a polynomial over a finite field Fq perfect if it coincides with the sum of its monic divisors. The study of perfect polynomials was initiated in 1941 by Carlitz’s doctoral student Canaday in the case q = 2, who proposed the still unresolved conjecture that every perfect polynomial over F2 has a root in F2. Beard, et al. later proposed the anal...

متن کامل

Notes on extremal and Tame Valued Fields

We extend the characterization of extremal valued fields given in [1] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012